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1 Quotient Spaces and Introduction to Compactness

1.1 Quotient spaces (continued)

If we have a f : X → Y is surjective, then we can define a partition P on X by taking sets
f−1(y) for each y ∈ Y . So we can define an identification space Y ∗ from X and P. Last
time, we proved the following theorem.

Theorem 1.1. If f : X → Y is continuous, surjective, and maps open sets to open sets,
then Y ∗ ∼= Y .

We said last time that a quotient space X/A was the special case where A ⊆ X,
Y = {∗}, f : A→ Y , and X/A is the identification space X ∪f Y .

Proposition 1.1. For any n ∈ N with n > 1, Bn/Sn−1 ∼= Sn.

Proof. Recall from stereographic projection that, calling p the “north pole” on Sn, Sn \
{p} ∼= Rn. Let g : Rn → Sn \{p} be a homeomorphism. We also have that Bn \Sn−1 ∼= Rn

by the homeomorphism h : Bn \ Sn−1 → R given by x 7→ (1 + tan(‖x‖π/2))x. Show that
this is a homeomorphism (exercise).

Then define f : Bn → Sn by

f(x) =

{
p x ∈ Sn−1 = ∂Bn(boundary of Bn)

g(h(x)) x /∈ Sn−1 (i.e. x ∈ ˚(Bn)).

Show that f is continuous (exercise). Show that f takes open sets to open sets (also
exercise, but similar to the previous). Then the previous theorem implies that Y ∗ from f
is homeomorphic to Sn. But

f−1(y) =

{
singleton y 6= p

Sn−1 y = p,
,

so Y ∗ = Bn/Sn−1.
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1.2 Compactness

1.2.1 Open covers and compactness

Definition 1.1. An open cover of a topological space X is a collection1 of open sets
{Ai} with Ai ⊆ X such that X =

⋃
iAi. If {Ai} and {Bj} are open covers of X, and

{Bj} ⊆ {Ai}, then {Bj} is called a subcover of {Ai}.

Example 1.1. Let X be any space. Then {X} is an open cover.

Example 1.2. Let X = R, and take the collection {Ai} := {Bε(x) : ε > 0, x ∈ R}; this
is an open cover. Let {Bj} := {Bε(x) : ε > 0, ε ∈ Q, x ∈ Q}; then {Bj} is a subcover of
{Ai}.

Definition 1.2. A space X is compact if every open cover of X has a finite subcover.2

Example 1.3. We show that R with the usual topology is not compact. Let X = R and
Ai = (i− 1, i+ 1) for each Z. {Ai} is an open cover of R, but for i ∈ Z, i ∈ Aj =⇒ i = j.
So there are no subcovers of {Ai}; in particular, there are no finite subcovers. Similarly,
Rn is not compact.

Definition 1.3. A subset A ⊆ X is compact if it is compact with the subspace topology.

Theorem 1.2. If f : X → Y is continuous, and X is compact, then the image f(X) is
compact.

Proof. Assume that f is surjective; if not, just consider g : X → f(X) given by g(x) = f(x).
Let {Ai} be an open cover of Y = f(X). Since f is continuous, f−1(Ai) is open for each
Ai, and ∀x ∈ X, x ∈ f−1(Ai) for some i (as {Ai} is a cover for Y ). So {f−1(Ai)} is an
open cover of X, and by the compactness of X, there exists a finite subcover of X; i.e.
X = f−1(Ai1)∪· · ·∪f−1(Ain). Since f(f−1(Ai)) = Ai, we have Y = f(X) = Ai1∪· · ·∪Ain .
So {Ai1 , . . . , Ain} is a finite subcover of {Ai}. Since {Ai} was an arbitrary open cover, this
works for every cover. Hence, Y is compact.

Here is the flow of the previous proof in a picture:

X Y

open cover open cover

finite subcover finite subcover.

The following theorem has a similar structure to its proof.

1This collection need not even be countable. We may have an uncountable collection of open sets in our
cover.

2Compactness is a property of the space itself, not of a particular cover.
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Theorem 1.3. If X is compact, and B ⊆ X is closed, then B is compact.

Proof. Let {Ai} be an open cover of B. Then each Ai = A′i ∩ B for some A′i ⊆ X open,
and B ⊆

⋃
A′i. Note that {A′i} ∪ {X \ B} is an open cover of X; X \ B is open because

B is closed. X is compact, so there exists a finite subcover X = A′i1 ∪ · · ·A
′
in
∪ (X \ B);

the set X \ B may not be necessary, but it has empty intersection with B, so it doesn’t
matter if we keep it. Then B = Ai1 ∪ · · · ∪ Ain , and since {Ai} was a generic open cover,
we conclude that B is compact.

1.2.2 Hausdorff Spaces

Definition 1.4. A space X is Hausdorff if for all x, y ∈ X with x 6= y, there are neigh-
borhoods Ux of x and Uy of y such that Ux ∩ Uy = ∅.

Theorem 1.4. If X is Hausdorff, and A ⊆ X is compact, then A is closed.

We will delay proof of this until next time. For now, we will use this theorem to prove
the following theorem.

Theorem 1.5. If f : X → Y is a continuous bijection, X is compact, and Y is Hausdorff,
then f is a homeomorphism.

Proof. If f takes closed sets to closed sets, then f−1 is continuous, and we are done. If
B ⊆ X is closed, then B is compact. The function f is continuous, so f(B) ⊆ Y is compact.
Then, by the previous theorem, f(B) is closed.
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