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1 Quotient Spaces and Introduction to Compactness

1.1 Quotient spaces (continued)

If we have a f : X — Y is surjective, then we can define a partition P on X by taking sets
f~(y) for each y € Y. So we can define an identification space Y* from X and P. Last
time, we proved the following theorem.

Theorem 1.1. If f : X — Y 1is continuous, surjective, and maps open sets to open sets,
then Y*2Y.

We said last time that a quotient space X/A was the special case where A C X,
Y ={x}, f: A=Y, and X/A is the identification space X U; Y.

Proposition 1.1. For any n € N withn > 1, B"/S"~1 = §n,

Proof. Recall from stereographic projection that, calling p the “north pole” on S™, S™\
{p} = R". Let g: R"® — S™\ {p} be a homeomorphism. We also have that B"\ S"~! = R"
by the homeomorphism h : B"\ S"~! — R given by x + (1 + tan(||z| 7/2))z. Show that
this is a homeomorphism (exercise).

Then define f: B® — S™ by

flz) = {p resl= 8B"(bounodary of B™)
g(h(z)) z¢S™ ! (ie x e (B")).

Show that f is continuous (exercise). Show that f takes open sets to open sets (also
exercise, but similar to the previous). Then the previous theorem implies that Y* from f
is homeomorphic to S™. But

_ singleton y # p
) =<7 ,
S y=r,

soY*=pn/S" 1 O



1.2 Compactness
1.2.1 Open covers and compactness

Definition 1.1. An open cover of a topological space X is a collection! of open sets
{A;} with A; € X such that X = (J; 4;. If {4;} and {B;} are open covers of X, and
{Bj} € {A;}, then {B;} is called a subcover of {A;}.

Example 1.1. Let X be any space. Then {X} is an open cover.

Example 1.2. Let X = R, and take the collection {4;} := {B:(z) : € > 0,2 € R}; this
is an open cover. Let {B;} := {B:(z) : € > 0,e € Q,z € Q}; then {B;} is a subcover of
{Ai}.

Definition 1.2. A space X is compact if every open cover of X has a finite subcover.?

Example 1.3. We show that R with the usual topology is not compact. Let X = R and
A; = (i—1,i+1) for each Z. {A;} is an open cover of R, but fori € Z,i € A; = i=j.
So there are no subcovers of {4;}; in particular, there are no finite subcovers. Similarly,
R" is not compact.

Definition 1.3. A subset A C X is compact if it is compact with the subspace topology.

Theorem 1.2. If f: X — Y is continuous, and X is compact, then the image f(X) is
compact.

Proof. Assume that f is surjective; if not, just consider g : X — f(X) given by g(z) = f(x).
Let {A;} be an open cover of Y = f(X). Since f is continuous, f~1(A;) is open for each
A;, and Vo € X, x € f71(A;) for some i (as {4;} is a cover for Y). So {f~1(4;)} is an
open cover of X, and by the compactness of X, there exists a finite subcover of X; i.e.
X = f~YA;)U---Uf1(A;). Since f(f~1(A;)) = A;, wehave Y = f(X) = A, U---UA;, .
So {A;,,...,A;,} is a finite subcover of {4;}. Since {4;} was an arbitrary open cover, this
works for every cover. Hence, Y is compact. ]

Here is the flow of the previous proof in a picture:

X Y

open cover <—————  Open cover

I

finite subcover —— finite subcover.

The following theorem has a similar structure to its proof.

LThis collection need not even be countable. We may have an uncountable collection of open sets in our
cover.
2Compactness is a property of the space itself, not of a particular cover.



Theorem 1.3. If X is compact, and B C X is closed, then B is compact.

Proof. Let {A;} be an open cover of B. Then each A; = A, N B for some A, C X open,
and B C JA!. Note that {A/} U{X \ B} is an open cover of X; X \ B is open because
B is closed. X is compact, so there exists a finite subcover X = A} U--- A} U (X \ B);
the set X \ B may not be necessary, but it has empty intersection with B, so it doesn’t
matter if we keep it. Then B = A;, U---U A;,, and since {4;} was a generic open cover,
we conclude that B is compact. O

1.2.2 Hausdorff Spaces

Definition 1.4. A space X is Hausdorff if for all x,y € X with z # y, there are neigh-
borhoods U, of x and U, of y such that U, N U, = @.

Theorem 1.4. If X is Hausdorff, and A C X is compact, then A is closed.

We will delay proof of this until next time. For now, we will use this theorem to prove
the following theorem.

Theorem 1.5. If f : X — Y is a continuous bijection, X is compact, and Y is Hausdorff,
then f is a homeomorphism.

Proof. If f takes closed sets to closed sets, then f~! is continuous, and we are done. If
B C X is closed, then B is compact. The function f is continuous, so f(B) C Y is compact.
Then, by the previous theorem, f(B) is closed. O
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